Frações

FraçõesImagine algumas situações que sempre ocorrem no nosso dia-a-dia: repartir uma pizza em pedaços iguais para 4 amigos, saber quanta gasolina o carro já consumiu em uma viagem ou mesmo saber quantos ovos foram gastos em uma caixa.

Essas situações são representadas por números fracionários , ou seja, através de frações , que são utilizadas para representar partes de um inteiro. Então, vamos voltar às situações anteriores:

1 pizza inteira dividida em 4 pedaços iguais, cada um comeu 1/4.

Em uma viagem um carro já gastou metade do tanque de gasolina, assim de um tanque inteiro gastou metade ou 1/2.

De uma caixa de ovos com 12 ovos foram usados 9, então a fração que representa é 9/12.

Nas frações há nomes específicos para os números que a compõe: o número que fica acima da barra é o numerador e o número que fica abaixo da barra é o denominador , então essa representação ficaria assim: numerador/denominador.

Agora um desafio para você: observe os números fracionários apresentados nas situações 1,2 e 3 e diga quais são os numeradores e denominadores de cada número representado…

Acertou?!?! Muito bom!!!

Leitura de frações

É muito fácil entender como se lê as frações, veja:

(a) Quando o numerador é 1 e o denominador é inteiro (1<d<10):

 

A leitura de uma fração da forma 1/d, onde d é o denominador que é menor do que 10 é feita da seguinte forma:

(b) Quando numerador é 1 e o denominador é um inteiro (d>10)

Quando a fração for da forma 1/d, com d maior do que 10 lemos: 1 para o numerador e no denominador e acrescentamos a palavra “avos”.

(c) O numerador é 1 e o denominador é um múltiplo de 10

Neste caso podemos fazer a leitura de duas formas: 

Você deve estar perguntando de onde vem a palavra “avos” e porque ela é usada me frações. Conhecendo a origem da palavra, fica mais fácil… Esse termo foi usado pela primeira vez em 1519… Há muito tempo, não?!?! E entre os povos antigos significava ‘fração, pequena parte de um todo, pouca coisa, coisa insignificante’, por isso é usado para representar partes pequenas de um todo, que coincide com o conceito de fração.

Tipos de Frações

Existem tipos diferentes de frações. Vamos conhecer cada um deles:

Chamamos de fração própria aquela que o numerador é menor que o denominador. Assim, 2/4 e 3/9 são exemplos de frações próprias.

Mas, quando é o contrário, ou seja, o numerador é maior do que o denominador, isto é, representa mais do que um inteiro dividido em partes iguais, essa fração é chamada de fração imprópria , como é o caso de 5/3 por exemplo.

Existe também a fração aparente , que é aquela cujo numerador é um múltiplo do denominador e aparenta ser uma fração, mas na verdade não é, porque representa um número inteiro. É importante mencionar um caso particular como exemplo: o zero é múltiplo de todo número inteiro, assim as frações 0/3, 0/8, 0/15 são aparentes, pois representam o número inteiro zero.

Finalmente temos as frações equivalentes. Recebem esse nome porque representam a mesma parte do inteiro. Se multiplicarmos numerador e denominador de uma fração sucessivamente pelos números naturais, teremos um conjunto infinito de frações que constitui um conjunto que é conhecido como a classe de equivalência da fração dada. Aqui podemos representar alguns exemplos:

                    

Os números fracionários surgiram por um problema que a população do Egito antigo teve que solucionar, veja só:

Há 3000 aC,  os faraós do Egito realizavam marcação das terras que ficavam às margens do rio Nilo, para a sua população. Mas, entre os meses de junho a setembro, o rio inundava essas terras levando suas marcações. Terminada a cheia, os proprietários das terras tinham que marcá-las novamente e para isso, eles utilizavam uma marcação com cordas, que seria uma espécie de medida, denominada estiradores de cordas.

 

As pessoas utilizavam as cordas, esticando-as e assim verificavam quantas vezes aquela unidade de medida estava contida nos lados do terreno, mas raramente a medida dava correta no terreno, isto é, não cabia um número inteiro de vezes nos lados do terreno, por isso sentiram a necessidade de criar um novo tipo de número - o número fracionário, onde eles utilizavam as frações e as medidas ficavam corretas.